3.324 \(\int \frac{1}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=315 \[ \frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{c^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}} \]

[Out]

(c^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2
 - 4*a*c])^(3/4)) - (c^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*Sqrt[b^2 - 4
*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/
(2^(1/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) - (c^(3/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b
^2 - 4*a*c])^(1/4)])/(2^(1/4)*Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.304007, antiderivative size = 315, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {1347, 212, 208, 205} \[ \frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{c^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{c^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4 + c*x^8)^(-1),x]

[Out]

(c^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2
 - 4*a*c])^(3/4)) - (c^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*Sqrt[b^2 - 4
*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/
(2^(1/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) - (c^(3/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b
^2 - 4*a*c])^(1/4)])/(2^(1/4)*Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 1347

Int[((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, In
t[1/(b/2 - q/2 + c*x^n), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c}, x] && EqQ[n
2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{a+b x^4+c x^8} \, dx &=\frac{c \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{\sqrt{b^2-4 a c}}-\frac{c \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{c \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{b^2-4 a c} \sqrt{-b-\sqrt{b^2-4 a c}}}+\frac{c \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{b^2-4 a c} \sqrt{-b-\sqrt{b^2-4 a c}}}-\frac{c \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{b^2-4 a c} \sqrt{-b+\sqrt{b^2-4 a c}}}-\frac{c \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{b^2-4 a c} \sqrt{-b+\sqrt{b^2-4 a c}}}\\ &=\frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}-\frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{c^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}-\frac{c^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt{b^2-4 a c} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0254798, size = 45, normalized size = 0.14 \[ \frac{1}{4} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\log (x-\text{$\#$1})}{\text{$\#$1}^3 b+2 \text{$\#$1}^7 c}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^4 + c*x^8)^(-1),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , Log[x - #1]/(b*#1^3 + 2*c*#1^7) & ]/4

________________________________________________________________________________________

Maple [C]  time = 0.003, size = 40, normalized size = 0.1 \begin{align*}{\frac{1}{4}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{\ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^8+b*x^4+a),x)

[Out]

1/4*sum(1/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

integrate(1/(c*x^8 + b*x^4 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 3.01051, size = 8162, normalized size = 25.91 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(
a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*arctan(1/4*(2*s
qrt(1/2)*((a^3*b^8 - 14*a^4*b^6*c + 72*a^5*b^4*c^2 - 160*a^6*b^2*c^3 + 128*a^7*c^4)*x*sqrt((b^4 - 2*a*b^2*c +
a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)) - (b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*
b*c^3)*x)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^
6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)) + (b^7 - 9*a*b^5*c + 2
4*a^2*b^3*c^2 - 16*a^3*b*c^3 - (a^3*b^8 - 14*a^4*b^6*c + 72*a^5*b^4*c^2 - 160*a^6*b^2*c^3 + 128*a^7*c^4)*sqrt(
(b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(-(b^3 - 3*a*b*c + (a
^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 -
 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2))*sqrt((2*(b^2*c^2 - a*c^3)*x^2 + sqrt(1/2)*(b^6 - 7*a*b^4*
c + 14*a^2*b^2*c^2 - 8*a^3*c^3 - (a^3*b^7 - 12*a^4*b^5*c + 48*a^5*b^3*c^2 - 64*a^6*b*c^3)*sqrt((b^4 - 2*a*b^2*
c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*
b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/
(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))/(b^2*c^2 - a*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*
a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3
)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))/(b^2*c^2 - a*c^3)) + sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4
 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^
9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*arctan(1/4*(2*sqrt(1/2)*((a^3*b^8 - 14*a^4*b^6*c + 72*a^5*b^4*
c^2 - 160*a^6*b^2*c^3 + 128*a^7*c^4)*x*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c
^2 - 64*a^9*c^3)) + (b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3)*x)*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c -
 (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^
2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^
5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*
a^4*b^2*c + 16*a^5*c^2)) - (b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3 + (a^3*b^8 - 14*a^4*b^6*c + 72*a^5
*b^4*c^2 - 160*a^6*b^2*c^3 + 128*a^7*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^
2*c^2 - 64*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2
*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c
^2)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 -
12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2))*sqrt((2*(b^2*c^2 - a*c^3)*
x^2 + sqrt(1/2)*(b^6 - 7*a*b^4*c + 14*a^2*b^2*c^2 - 8*a^3*c^3 + (a^3*b^7 - 12*a^4*b^5*c + 48*a^5*b^3*c^2 - 64*
a^6*b*c^3)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(-(b^
3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c +
48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))/(b^2*c^2 - a*c^3)))/(b^2*c^2 - a*c^3)) +
 1/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^
2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*log(-(b^2*c
 - a*c^2)*x + 1/2*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c
+ a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3
*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 6
4*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*
a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3
)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*log(-(b^2*c - a*c^2)*x - 1/2*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (a^3*b^
5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64
*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c +
 a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))) + 1
/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)
/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*log(-(b^2*c -
 a*c^2)*x + 1/2*(b^4 - 5*a*b^2*c + 4*a^2*c^2 + (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c +
a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b
^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*
a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^
4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3))
)/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*log(-(b^2*c - a*c^2)*x - 1/2*(b^4 - 5*a*b^2*c + 4*a^2*c^2 + (a^3*b^5
- 8*a^4*b^3*c + 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a
^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a
^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2))))

________________________________________________________________________________________

Sympy [A]  time = 6.57737, size = 177, normalized size = 0.56 \begin{align*} \operatorname{RootSum}{\left (t^{8} \left (16777216 a^{7} c^{4} - 16777216 a^{6} b^{2} c^{3} + 6291456 a^{5} b^{4} c^{2} - 1048576 a^{4} b^{6} c + 65536 a^{3} b^{8}\right ) + t^{4} \left (- 12288 a^{3} b c^{3} + 10240 a^{2} b^{3} c^{2} - 2816 a b^{5} c + 256 b^{7}\right ) + c^{3}, \left ( t \mapsto t \log{\left (x + \frac{16384 t^{5} a^{5} b c^{2} - 8192 t^{5} a^{4} b^{3} c + 1024 t^{5} a^{3} b^{5} + 8 t a^{2} c^{2} - 16 t a b^{2} c + 4 t b^{4}}{a c^{2} - b^{2} c} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**8*(16777216*a**7*c**4 - 16777216*a**6*b**2*c**3 + 6291456*a**5*b**4*c**2 - 1048576*a**4*b**6*c + 6
5536*a**3*b**8) + _t**4*(-12288*a**3*b*c**3 + 10240*a**2*b**3*c**2 - 2816*a*b**5*c + 256*b**7) + c**3, Lambda(
_t, _t*log(x + (16384*_t**5*a**5*b*c**2 - 8192*_t**5*a**4*b**3*c + 1024*_t**5*a**3*b**5 + 8*_t*a**2*c**2 - 16*
_t*a*b**2*c + 4*_t*b**4)/(a*c**2 - b**2*c))))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(1/(c*x^8 + b*x^4 + a), x)